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Electrostatic interaction energies between dipolar substituents and dipolar or charged reaction sites are re-examined.
At short interaction distances and given orientations, the point-dipole approximation is shown to introduce
important errors. Exact expressions are derived for correcting current equations for both interaction types, including
the Kirkwood–Westheimer equation. The parameter λ for describing para–meta ratios of substituent inductive
or Electra effects in benzene derivatives is modelled in terms of electrostatic interaction energy. Using the new
equations it is shown that parameter λ can take values smaller or greater than unity, approaching a value of 2 at very
large distances. Experimental λ values are calculated using reliable literature data for the ionisation equilibria of
substituted phenylethanoic and 3-phenylpropanoic acids in ethanol–water mixtures. Theoretical λ values for these
reactions are obtained taking into account rotational and conformational changes in the corresponding carboxylate
anions. From the good agreement between experimental and theoretical λ values, it is concluded that there is
through-space transmission of substituent effects in benzene derivatives.

Introduction
Current analyses of substituent effects on organic reactivity
are based, to a large extent, on experimental values for trans-
mission coefficients associated with different scales of substitu-
ent constants.1 For reactions of benzene derivatives, we have
claimed that a further important parameter is the para–meta
ratio of the substituent inductive or Electra effect.2 Despite
prolonged controversy,3 our theoretical treatment is committed
to identifying the mode of transmission of the inductive or
Electra 2a effect as a through-space transmission.

In this work we develop a theoretical analysis of parameter λ
defined as the ratio of electric field effects from para and meta
positions in benzene derivatives. The analysis is focused on
interactions between dipolar substituents and either dipolar
or charged reaction sites at varying distance from the benzene
ring. We exemplify the shortcomings of using point-dipole
approximations at short distances and derive exact correcting
factors for the calculation of dipole–charge and coplanar
dipole–dipole interaction energies. For both types of inter-
action we show that parameter λ can be smaller or greater than
unity, depending on the distance. Using literature data,4 we
apply the tetralinear approach of substituent effects 2b,c to the
ionisation equilibria of mono-substituted phenylethanoic and
3-phenylpropanoic acids in ethanol–water mixtures. We report
new evidence supporting an electric field nature of substituent
Electra effects.

Electrostatic theory background
In a medium of electric permittivity ε, a fixed electric point-

† Electronic supplementary information (ESI) available: Table S1 con-
taining literature data for substituent constants and pKa values used in
this work. See http://www.rsc.org/suppdata/p2/b1/b106418e/

charge Q creates an electrostatic field, the potential V of which
at a distance r is given by eqn. (1). 

The electric energy Ee acquired by a point charge Q� placed in
this field is Ee = VQ�. Hence, at distance r from Q, the energy
acquired by Q� is characterised by eqn. (2). 

According to the law of superposition of potentials, in a
given point the potential is the sum of the potentials originated
separately by different charges. A simple electric dipole is com-
posed of two equal charges of opposite sign, Q and �Q, separ-
ated by a fixed distance l = 2a. Therefore the interaction energy
between this dipole and charge Q� is described by eqn. (3).5 

A common approximation uses the vector electric dipole
moment µ the scalar value of which is µ = Ql. We start out by
rewriting eqn. (3) in the form of eqn. (4) and (5).  

For a short dipole at long interaction distances, r� and r�

may be measured from the middle of dipole length (point-
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dipole approximation). In this approximation the product r�r�

can be equated to r2 and the difference r� � r� be approximated
by lcos θ. Here θ is the angle formed by vector µ, whose direc-
tion is taken to be from the negative to the positive charge, and
the line joining this point-dipole to point-charge Q�. The result-
ing interaction energy is expressed by eqn. (6).

The latter (approximate) equation forms the basis of the his-
torically important Kirkwood–Westheimer model 6 for express-
ing the influence of a dipolar substituent on the dissociation
constant of carboxylic acids.

Generally eqn. (6) under- or overestimates dipole–charge
interaction energies. We point out the consequences of the
approximations made in obtaining eqn. (6). Thus its validity
decreases as (i) interaction distances decrease, for fixed dipole
length and interaction angle; and (ii) dipole lengths increase, for
fixed interaction distance and angle. However, in modelling
electric field chemical effects in terms of eqn. (6), only rarely
has the latter source of approximation been pointed out.7 Fur-
thermore, at fixed dipole length and interaction distance, the
error introduced by eqn. (6) depends on the interaction angle θ.
In this respect Exner and co-workers 3a,e,j have commented that
the influence of the angle θ is overestimated by eqn. (6). Here
we note that for a dipole having l = 0.2 nm, at r = 0.2 nm from a
point charge, eqn. (6) underestimates Ee by 25% at θ = 0�, gives
the same value as eqn. (3)–(5) at θ = 36� and overestimates Ee by
38% at θ = 80�. This problem is further complicated by the fact
that the angle at which eqn. (6) gives the correct answer is a
function of both l and r.

We turn our attention to dipole–dipole interactions. These
are constituted by the interactions between charges Q and �Q,
on the one hand, and charges Q� and �Q�, on the other.
Eqn. (7), which is readily obtained from eqn. (2), expresses the
corresponding interaction energy.3j

This interaction energy can equivalently be expressed in
terms of dipole moments µ and µ� together with their lengths l
and l� leading to eqn. (8).

However, in the chemical literature preference is often given
to the approximation using point-dipole–point-dipole inter-
actions. Under this approximation, interaction energies are
given by eqn. (9).8

In the latter equation, θ is the angle defined by vectors r and
µ, and similarly for θ�. The vector r is oriented from µ to µ�, and
� and �� are dihedral angles referred to a common reference
plane. The case of coplanar dipoles is of special interest. For
� � �� = 0� eqn. (10) is obtained.3j,l,9 

(5)

(6)

(7)

(8)

(9)

In this case the angle Θ formed by vectors µ and µ� is given by
the difference θ � θ� if θ > θ�, or by θ� � θ if θ < θ�.

At a fixed distance maximum attractive energy between
coplanar dipoles is attained for � � �� = 180�. At this dihedral
angle eqn. (9) leads to eqn. (11), and Θ = θ � θ� if θ � θ� > 180�,
or Θ = 360� � (θ � θ�) if θ � θ� < 180�.

Alternatively, from the trigonometric relation cos (θ ± θ�) =
cos θcos θ� � sin θsin θ�, eqn. (10) and (11) can be condensed
into eqn. (12).

The point-dipole approximation generally leads to under-
or overestimates of interaction energies between dipoles, the
pattern of deviations being similar to the aforementioned case
of dipole–charge interactions. Thus, for two coplanar dipoles
having equal length (l = l� = 0.15 nm) at a short distance (r =
0.25 nm), fixing θ = 0� eqn. (12) underestimates Ee by 36% at
θ� = 0�, giving the same value as eqn. (7) and (8) at θ� = 56.3�
and overestimating Ee by 14% at θ� = 80�. A more detailed
comparison is made by Hirschfelder et al.,8b who conclude that
the deviations of the real dipoles from the point-dipole
approximation is appreciable when r/l < 2.

Results and discussion

New equations for interactions with dipoles

Estimation of electrostatic interactions from dipolar substitu-
ents has been considered to be more conveniently done using
known dipole moments rather than unknown point charges.
The equations developed below are free from the errors due
to the point-dipole approximation while retaining the use of
dipole moments.

For dipole–charge interactions, distances r� and r� can be
expressed in terms of r, a (= l/2) and θ using the cosine rule for
triangles; eqn. (13) and (14).

Hence the difference 1/r� � 1/r� is given by eqn. (15).

Next eqn. (15) is inserted into eqn. (4). Since l = 2a, we obtain
eqn. (16).

In relation to approximate eqn. (6), the extra parameter in
eqn. (16) is the dipole half-length a. The latter quantity can
usually be accurately calculated from structural data. Values
obtained using eqn. (6) will be correct following multiplication
by the factor f given in eqn. (17), where x = a/r.

(10)

(11)

(12)

r�
2 = r2 � a2 � 2arcos θ (13)

r�
2 = r2 � a2 � 2arcos θ (14)

1/r� � 1/r� = (1/r){[1 � (a/r)2 � 2(a/r)cos θ]�½ � 
[1 � (a/r)2 � 2(a/r)cos θ]�½} (15)

Ee(dipole–charge) = (Q�µ/8πεar){[1 � (a/r)2 �
2(a/r)cos θ]�½ � [1 � (a/r)2 � 2(a/r)cos θ]�½} (16)

324 J. Chem. Soc., Perkin Trans. 2, 2002, 323–328



This equation clearly shows that the ratio a/r and θ are the
significant parameters determining the correcting factor f to
approximate eqn. (6). Therefore, the corrected Kirkwood–
Westheimer equation for describing the effect of dipolar
substituents on dissociation constants of carboxilic acids is
expressed by eqn. (18).

Here K/K0 is the ratio between ionisation equilibrium con-
stants for substituted and unsubstituted acids, f is the correcting
factor given by eqn. (17), e is the elementary charge, k is the
Boltzmann constant and T  is the temperature.

The case of interacting electric dipoles is more involved. We
begin with two coplanar dipoles for which � � �� = 180�. We
designate by d� the line joining the positive pole in dipole µ to
the centre of dipole µ�, the angle α� being formed by lines d�

and r. From the cosine rule in triangles eqn. (19)–(21) follow.

Similar equations are obtained for geometric parameters
relating the negative pole in µ to both poles in µ�; eqn. (22)–(24).

At this point we observe that only the angles α� and α�

remain to be determined. To this end we apply the sine rule to
the triangles [a, d�, r] and [a, d�, r], which leads to eqn. (25) and
(26).

Noting that l = 2a and l� = 2a�, in the case � � �� = 180� we
have now the means for recasting eqn. (8) in terms of µ, µ�, r, a,
a�, θ and θ�. Although involved, the expression thus obtained
is simple to implement on a desk computer. Similarly, for
coplanar dipoles we find that the correcting factor f to the
values for Ee(µ � µ�) calculated in terms of the approximate
eqn. (10)–(12) is expressed by eqn. (27), in which upper signs
apply to the case � � �� = 0� and lower signs to the case � �
�� = 180�.

(17)

(18)

(r��)2 = (a�)2 � (d�)2 � 2a�d�cos (θ� � α�) (19)

(r��)2 = (a�)2 � (d�)2 � 2a�d�cos (θ� � α�) (20)

(d�)2 = r2 � a2 � 2arcos θ (21)

(r��)2 = (a�)2 � (d�)2 � 2a�d�cos (θ� � α�) (22)

(r��)2 = (a�)2 � (d�)2 � 2a�d�cos (θ� � α�) (23)

(d�)2 = r2 � a2 � 2arcos θ (24)

α� = arcsin (asin θ/d�) (25)

α� = arcsin (asin θ/d�) (26)

f (coplanar dipole–dipole) = [1/4xx�(cos Θ �
3cos θcos θ�)] × {[1 � x2 � x�2 � 2xcos θ �

2x�(1 � x2 � 2xcos θ)½cos (θ� ± α�)]�½ �
[1 � x2 � x�2 � 2xcos θ � 2x�(1 � x2 �

2xcos θ)½cos (θ� ± α�)]�½ � [1 �
x2 � x�2 � 2xcos θ � 2x�(1 � x2 �

2xcos θ)½ cos (θ� � α�)]�½ � [1 � x2 �
x�2 � 2xcos θ � 2x� (1 � x2 �

2xcos θ)½cos (θ� � α�)]�½} (27)

The shorthand x = a/r and x� = a�/r is used in the above
equation, where angles α� and α� are respectively given by eqn.
(28) and (29), which follow from eqn. (21) and (24)–(26).

In the context of coplanar dipole–dipole interactions we
find that x, x�, θ and θ� are the only parameters required for
correcting electrostatic energies estimated at short distances in
terms of eqn. (10)–(12). Accurate values can thus be calculated
using eqn. (30), in which f is given by eqn. (27).

Theoretical parameter � for coplanar dipole–dipole interactions

Theoretical calculations of parameter λ are based on the
electrostatic theory. A model for neutral activated complexes
in reactions of benzene derivatives consists of a reaction centre
R bearing electric dipole moment µR at distance d from the
benzene ring along its 1,4 axis, and of a given substituent
X (dipole moment, µX) in either para or meta position.
Electrostatic interaction energies between coplanar dipoles are
accurately described by either eqn. (8) or (30), where ε is now
to be regarded as the effective permittivity across distance r
joining the centres of dipoles X and R.

For the purpose of theoretical calculations, we identify par-
ameter λ with the para/meta ratio of electrostatic interaction
energies between substituents and reaction site. Assuming
identical effective permittivities for field effects from para
and meta positions, then parameter λ(µX, µR; coplanar) for
dipole–dipole interactions is given by the algebraically equiv-
alent eqn. (31) and (32).

In the present context it is important to note that we have
arrived at two equivalent expressions for parameter λ that are
free from the usual difficulties associated with the electrostatic
field treatment.3h,10 Indeed, only geometric quantities are
required to calculate λ using eqn. (31) or (32). In our model we
fix θp-R = 0�, i.e. both poles of reaction centre R are situated on
line d. Hence Θp = θp-X = 0�, Θm = 60� and θm-R = 60� � θm-X, and
eqn. (33) is obtained from eqn. (32).

As the interaction distance increases, both correcting factors
fp and fm and distances rm and rp become very close to each other
and θm-X tends to 60�. In this way we find from eqn. (33) that the
para/meta ratio of field effects will approach a higher bounding
value of two as the reaction site becomes increasingly far away
from the benzene ring. It is therefore remarkable that parameter
λ can take values considerably in excess of unity.

α� = arcsin [x(1 � x2 � 2xcos θ)�½sin θ] (28)

α� = arcsin [x(1 � x2 � 2xcos θ)�½sin θ] (29)

(30)

(31)

(32)

(33)
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Following Dewar et al.,11 the poles of a dipolar substituent
are localised in its α-atom and nearest carbon atom belonging
to the benzene ring. This convention implicitly accounts in part
for polarisation effects across sigma bonds. From an average
over 26 substituents,2c this dipole length is estimated to be
lX = 0.153 nm. This value, together with tabulated molecular
parameters,12 is then used in the geometric calculation of the
variables fp, fm, θm-X, rm and rp in eqn. (33), in the case of dipole
length lR = 0.1 nm. We chose the benzene 1,4 axis for measuring
distances d. Curve A in Fig. 1 shows the variation of λ(µX, µR)

against d. However, an angular dependence of parameter λ

should be observed for other geometries. Thus an interesting
new tool has been designed for elucidating reaction mechan-
isms, provided that accurate values for parameter λ can be
experimentally determined. That this is a promising tool will be
shown in a subsequent paper,13 where the oxidation reaction of
benzyl alcohols in anhydrous media is discussed.

Theoretical parameter � for dipole–charge interactions

We turn attention to the field effect of a polar substituent on a
charged reaction site. In this case substituent electrostatic
effects have been regarded as resulting from either electric
dipole moments 14 or, more accurately, from two equal partial
electric charges of opposite sign.11 Both treatments take into
account substituent dipole orientation. We have successfully
used Dewar et al.’s approach 11 to model parameter λ for
the dissociation equilibria of substituted pyridinium ions,
phenols, anilinium ions and benzoic acids, obtaining values
in the range 0.84–0.98.2b,c It is therefore of interest to extend
these calculations to molecular frameworks in which there is a
charged site farther from the benzene nucleus than in the above
examples.

From eqn. (4) we find that parameter λ for dipole–charge
interactions is given by eqn. (34),2c the alternative eqn. (35)
following from eqn. (16) and (17).

Fig. 1 The para/meta ratio of electrostatic field effects, λe, for a dipolar
substituent as a function of distance d from the benzene ring for (A) a
dipole having length l = 0.1 nm situated on the 1,4 axis, and (B) a
charged reaction site on the 1,4 axis. In the inset the variation is
magnified for short distances corresponding to the following molecular
frameworks: (1), pyridinium cation; (2), anilinium cation and phenolate
anion; (3), benzoate anion.

(34)

(35)

Similarly to dipole–dipole interactions, only geometric
parameters are required for theoretical calculations of para/
meta ratios of dipole–charge interactions.

Next we study the effect of charge distance on parameter λ.
At very long distances d along the benzene 1,4 axis, in eqn. (35)
both ratios fp/fm and rm/rp are approximately unity whereas cos
θp/cos θm approaches 1/cos 60� = 2. Therefore parameter λ for
dipole–charge interactions has a higher limiting value equal to
two, which turns out to be the same as in the case of dipole–
dipole interactions. The monotonic variation of λ with the
position of a charged centre on the benzene 1,4 axis is given by
curve B in Fig. 1.

For both types of interaction, our experience has shown that
calculation procedures directly based on eqn. (31) and (34) are
easier to implement on a spreadsheet than eqn. (32) and (35).
Results of these calculations demonstrate that the para/meta
ratio of substituent electric field effects depends noticeably
on molecular frameworks. Thus from eqn. (34) we obtain
values of about 0.84 at close distances, increasing to 1.12 at
0.4 nm, and a limiting upper value equal to 2 at an infinite
distance. This finding contrasts with the early assumption 15

of an invariant λ = 1, as well as with Exner’s empirically
determined 1a,i,16 λ = 1.14.

Experimental and theoretical parameter � for phenylethanoate
and 3-phenylpropanoate anions

Phenylethanoic and 3-phenylpropranoic acids have interesting
molecular frameworks for studying substituent effects. Since
methylene groups efficiently block the transmission of direct
resonance effects to the reaction site, sigma-zero constants are
appropriate for describing substituent effects on the ionisation
equilibria of these organic acids.

In the analysis developed below we use the unified σ0 scale 1j

and reliable ∆pKa data at 298 K from Wepster’s laboratory 4

for mono-substituted phenylethanoic acids (comprising 12
meta and 15 para derivatives in 75% ethanol–water solvent,
and 11 meta and 15 para derivatives in 50% ethanol–water
solvent) and for mono-substituted 3-phenylpropranoic
acids (comprising 6 meta and 3 para derivatives in 75%
ethanol–water solvent, and 5 meta and 3 para derivatives
in 50% ethanol–water solvent). These data (recorded in
Table S1 †) are treated with our tetralinear method,2c which is
designed to yield experimental values for parameter λ. Monte
Carlo estimates of standard errors are calculated using
a procedure previously described.2b The results thus obtained
are summarised in Table 1. The four reaction series are
correlated by the constrained tetralinear equation with small
standard deviations. Derived λ values have accuracy of
about 5% in 75% aqueous ethanol and 8% in 50% aqueous
ethanol. No solvent dependence of parameter λ can be
firmly inferred from values in Table 1. In fact, for both acids
differences between λ values are well within their combined
errors.

Numerical values in Table 1 for parameter λ deserve further
discussion. At first sight it seems strange that almost identical
experimental values are obtained for the molecular frame-
works of phenylethanoate and 3-phenylpropranoate ions. This
is because in the former there is a methylene group insulating
benzene ring from the carboxylate anion, whereas in the latter
there are two methylene groups. Interestingly this finding can
be explained in terms of the electrostatic interpretation of
parameter λ. Assuming free rotation about carbon–carbon
single bonds, the centre of negative charges in phenylethanoate
ions describes a circle with radius equal to 0.188 nm on a plane
normal to the phenyl 1,4 axis, and 0.229 nm distant from the
benzene nucleus (Scheme 1). In this case distances in eqn. (34)
and (35) are not uniquely defined, parameter λ being a function
of  rotation  �  about  the  phenyl  1,4  axis.  We  define  an  average 
λe
¯¯(�) value using eqn. (36).
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Table 1 Experimental and theoretical parameter λ for the ionisation of benzenoid acids in aqueous ethanol at 298 K

Acid Solvent SD a λ b λe
c

Phenylethanoic 75% EtOH–H2O 0.034 1.03 ± 0.05 1.067
 50% EtOH–H2O 0.043 1.13 ± 0.09  
3-Phenylpropanoic 75% EtOH–H2O 0.019 1.02 ± 0.06 1.019 (syn)
 50% EtOH–H2O 0.023 1.08 ± 0.09 1.123 (anti)

a Standard deviation in units of ∆pKa for the best fit of data in Table S1 to the constrained tetralinear equation. b Monte Carlo errors are averages
over 1000 simulations. c Theoretically calculated values using electrostatic theory (see text). 

For conformations corresponding to one-degree intervals in
rotation �, distances in eqn. (34) were analytically calculated
and the resulting individual λe values numerically integrated.
Fixing � = 0� for the conformation in which the meta substitu-
ent and carboxylate group are at their farthest, we calculated
λe(0�) = 1.002, λe(90�) = 1.039 and λe(180�) = 1.193. From
eqn. (36) we obtained λe

¯¯(�) = 1.067, which is in very good
agreement with experimental values in the confidence intervals
0.98–1.08 and 1.04–1.22 (Table 1).

The case of 3-phenylpropanoate ion is not so straight-
forward. Inspection of its molecular framework indicates that
important consequences for charge location arise from confor-
mational changes due to rotation about the single bond linking
their methylene groups. In the eclipsed at 0� (syn) conformation,
the centre of negative charges describes a large circle around the
phenyl 1,4 axis, being centred at d = 0.047 nm and having a
radius equal to 0.239 nm (Scheme 2). The complex variation of
λe(syn) as a function of rotation � is shown in Fig. 2. Following

a 180� rotation about the C2–C3 bond, the centre of negative
charges in the staggered (anti) conformation describes a small
circle (radius, 0.112 nm) around the same axis as above, being

Scheme 1

(36)

Fig. 2 The para/meta ratio of electrostatic field effects, λe(syn), for a
dipolar substituent in 3-phenylpropanoate ions (see Scheme 2) as a
function of the rotation � about the phenyl 1,4 axis.

centred  at  d  =  0.378  nm.  On  the  basis  of  eqn.  (36),  average
λe
¯¯(�) values were calculated for both extreme conformers. In
this way we obtained λe

¯¯(syn) = 1.019λe and λe
¯¯(anti) = 1.123.

Predicting the actual theoretical parameter λe requires cal-
culation of relative conformer populations. Although this has
been done for related problems,17 we simply observe that best
experimental λ values of 1.02 and 1.08 reported in Table 1 for
3-phenylpropanoate ions are between calculated values for syn
and anti conformers.

Best experimental values for the para/meta ratio of the sub-
stituent Electra effect near to or greater than unity are also
remarkable in that they cannot be explained using models for
transmitting the Electra effect through sigma bonds.18 Indeed,
the latter models invariably predict λ values smaller than
unity.2c

In summary, at short interaction distances we have refined
the Kirkwood–Westheimer approach to substituent effects and
calculated accurate values for the ratio of electrostatic field
effects from para and meta positions in derivatives of phenyl-
ethanoic and 3-phenylpropanoic acids. These ratios, which are
found to lie in the range 1.02–1.12, are taken as theoretical
values for the parameter λ. Previous calculations 2b,c for
different molecular frameworks yielded ratios between 0.84
and 0.98. Therefore, from the good agreement between theory
and experiment over an extended range of λ values we con-
clude that the Electra or inductive effect in benzene derivatives
is of electrostatic origin and is transmitted through space
from polar substituents to reaction sites in the meta or para
positions.
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